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Interface Motion in a Planar Spin-Flip Model 
Derived from Exclusion on the Line 

T h o m a s  S trobe l  i 
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We consider a two-dimensional spin-flip model, which can be interpreted as the 
limit of the Ising model at low temperature and a small nonzero external field. 
In the hydrodynamic limit and for a special class of initial conditions, the 
motion of the interface is governed by a nonlinear partial differential equation 
with a lattice-distorted curvature term. In our proofs we use results about the 
hydrodynamic behavior of the weakly asymmetric exclusion process on the 
integers and also on the nonnegative integers with a trap at the boundary. 

KEY WORDS:  Glauber dynamics; hydrodynamic limit; exclusion process; 
motion by curvature. 

1. INTRODUCTION 

For a spin system with a given Hamiltonian one often introduces rates for 
flipping the spins one at a time in such a way that every Gibbs state 
becomes reversible. The application of this Glauber or spin-flip dynamics 
to a nonequilibrium state may serve as a model for the behavior of the 
system under the physical conditions described by the Hamiltonian. 

In this paper we will study a class of attractive nearest-neighbor spin- 
flip models with state space { + 1, - 1 } z2 for which flips occur only at sites 
having at least two nearest neighbors with opposite spin. Rates satisfying 
these assumptions appear, for example, as the low-temperature limit of 
rates for the ferromagnetic Ising model with nearest-neighbor interaction 
and with a constant external field that is decreased linearly with the 
absolute temperature. 
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We will concentrate on the asymmetric case when the rate for a ( + )  
to ( - )  flip at sites with exactly two positive neighbors is different from the 
( - )  to ( + )  rate. This corresponds to a nonzero external field in the Ising 
models. Our aim is to find the equation governing the motion of the inter- 
face separating the plus from the minus region on a macroscopic scale. To 
this end, we consider the spin-flip process on the lattice (eZ) 2, send the 
asymmetry of the rates to zero linearly with e > 0 ,  and choose an 
appropriate time scale. In this continuum limit, let the initial interface be 
given by some deterministic smooth curve {x, ~po(X)): x ~  R} with positive 
spins above the curve (i.e., in {x, y): y > ~Po(X)}) and negative spins below 
it. We want to prove that time evolution deforms this curve into 
{(x, ~p(t, x)): x ~ R} at macroscopic time t, where ~p(t,-) is the solution of 
the following initial-boundary-value problem: 

1 t>O,  x e R  (1.1) q~,= _~Pxx(1 + Iq,.,.I)-: + y Iq,.,.I (1 + I~pxl- ' ,  

q~(t,x)-*~Po(X) as t - * 0  + for all x e ~  

Here subscripts denote partial derivatives in the (t, x) plane. The parameter 
), :/: 0 expresses the asymmetry of the rates. Its sign is opposite to that of the 
external field in the Ising models. 

The initial condition is written as a limit statement because later we 
allow discontinuous initial functions, possibly with infinite values. 

We prove Eq. (1.1) rigorously in two special cases. 

1. Nonincreasing ~Po, which are constant for sufficiently large x. We 
allow what we will call "pinned stairstep configurations" to approximate Cpo 
with their interfaces. 

2. Unimodal ~Po with ~po(X)= - x  for x ~< 0, ~p0(x) nondecreasing for 
nonnegative x. Here we restrict the initial configurations to so-called 
"V-stairsteps" with a unimodal interface and freeze the dynamics on its 
decreasing part. The limit interface ~p(t, �9 ) will be unimodal for all t > 0. On 
its increasing part, (1.1) is satisfied. 

The basic idea of proof is a mapping to one-dimensional exclusion 
models. These are particle system on 7' where particles change places with 
neighboring holes. 

Equations (1.1) follows from hydrodynamic limit theorems for the 
exclusion process. In the case of pinned monotone interfaces we can directly 
use known results 12" 4. 6)where Burgers' equation with viscosity is obtained. 
Partly frozen interfaces lead to an exclusion process with boundary condi- 
tion treated in the thesis of the author t ~2) using a nonlinear transformation 
of the particle system in the spirit of G~irtner. 14~ 
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Standard references for the derivation of hydrodynamic equations are 
refs. 3 and 10. 

It is tempting to compare Eq. (1.1) to known results for the symmetric 
case (vanishing external field and thus y = 0). S po hn l~  has shown that the 
equation 

I ~pt=~pxx(l + I~xl) -2, t>O,  x E ( - - 1 ,  1] 

governs the macroscopic behavior of a one-dimensional zero-range process 
with two components of particles annihilating each other and periodic 
boundary conditions. This process describes the evolution of the interface 
height cp(t, x) above the x axis as a function of x and time t when one 
applies spin-flip dynamics of the Ising model at zero temperature and 
vanishing external field while forbidding flips which would render the inter- 
face height function multivalued. 

Spohn also gives a geometric interpretation; the embedded curve in R 2 
has normal velocity 

v. = (K/2)(Isin ~9l + ICOS ~9l)-2 

where K is the local curvature and ,9 the angle between the tangent vector 
and the x axis (i.e., tan 0 = ~Px); cf. Eq. (4.26) in ref. 11. 

The same lattice-distorted curvature term is also found in Eq. (1.1). 
The additional first-order term accounts for the asymmetry of the rates. It 
depends only on the limit asymmetry y and the angle ,9 through [~p.,.J. 

The main results of this paper are Theorems 2.1 and 2.2. There, the 
parametrization of the interface is adapted to our mapping to the exclusion 
model. In Sections 2.1 and 2.2 we explain this mapping and show how to 
obtain (1.I) from our theorems. We summarize the necessary facts about 
the hydrodynamic behavior of the exclusion model in Section 3. The proofs 
in Section 4 heavily rely on them. 

2. THE SPIN-FLIP MODEL AND ITS MAPPING TO THE 
EXCLUSION PROCESS 

The spin-flip models we are going to investigate are Markov processes 
(co,),>~o with state spate { - 1, + 1 } z2 

In all our models, the spin co(p) at any site p e Z  2 flips to - co (p )  at 
a rate depending only on co(p), the number s(p, co) of neighbor sites q of 
p with co(q)= -co(p) ,  and a parameter ~ 0 .  In infinitesimal time inter- 
vals, flips at different sites occur independently. 
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Denoting the flipping rate at p by c~(co(p), s(p, co)), we can express 
this heuristic description of the process in terms of its generator. Applied 
to a cylinder function f ,  it has the value 

c~(co(p), s(p, ~))(pco'~)- f(co)) 
pEZ  2 

at co ~ { - 1, + 1 } z2, where co~" denotes the configuration obtained from co 
by flipping the spin at p. 

The numbers ca(a, s), a ~ { - 1, + 1 }, s E { 0, 1, 2, 3, 4}, are supposed 
to satisfy 

1 + a .  tanh(cc) 
0 = c=(a, 0 ) =  c=(cr, 1 )<  c ' (a ,  2 ) -  

2 

~< c~(cr, 3) ~< c~(cr, 4) ~< + oo (2.1) 

This condition is satisfied for low-temperature limits of certain spin-flip 
dynamics associated to the two-dimensional /sing model in the following 
sense: Consider the ferromagnetic nearest-neighbor Ising model in the 
square lattice with a nonvanishing constant external field h e R \ { 0 } ,  
inverse temperature fl > 0, and interaction strength J >  0 between nearest 
neighbors. Its formal Hamiltonian reads 

H ( c o ) = - f l J  ~. co(p)co(q)-flh ~. co(p), c o ~ { - 1 ,  +1} z2 
(p ,q> p e Z  2 

where the first sum is over (nearest) neighbor pairs of sites in 7/-'. 
Let us now suppose that strictly positive numbers c(cr, s), cre { - 1, + 1 }, 

s~ {0, 1, 2, 3, 4}, have the property 

c ( + l , s ) = c ( - 1 ,  s) e-aaJ~4-2")e -2ah, s = 0 ,  1 , 2 , 3 , 4  

and take c(co(p), s(p, co)) as the rate for flipping the spin at p in a con- 
figuration co. 

These rates satisfy the detailed balance condition with respect to H. 
Hence the corresponding spin-flip process is reversible if it is started in 
any H-Gibbs state. One such example was discussed by Marchand 
and Martin, ~81 others can be derived specializing the rates mentioned in 
Liggett, ~7) Chapter  IV.2. In the low-temperature limit 

] / - -++co ,  h--*0, 0 c = - f l h : ~ 0 f i x e d ,  J > 0 f i x e d  

(i.e., the external field is made proport ional  to the temperature 1/fl), these 
three choices all satisfy (2.1) up to a constant factor. 
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The fact that each spin of the sign of H gives the negative energy con- 
tribution - f l  Ihl to the Hamiltonian is reflected in the dynamics as 

c(sgn(h), 2) < c( - sgn(h), 2) 

i.e., a spin of sgn(h) is less likely to disappear in a short time than a spin 
of - s g n ( h )  if both have two neighbor spins of either sign. 

Define the interface of a configuration o9 e { + 1, - 1 } z2 as the boundary  
(in R 2) of the union of all unit cubes of the form [ p ~ -  1 ,p l ]  x [ p _ , -  1,p2] 
taken over all (p~ , P 2 ) e  7/2 with og(pa, P2 )=  + 1. It is always contained in 

{ (x, y) E Rz: x or y is an integer} 

In order to obtain (1.1) in the cont inuum limit, set for positive e 

~=ct(e)  :=ye  for some fixed y # 0  

fix a family (c~t')(., ")),>o of rates satisfying (2.1), and call the corre- 
sponding family of spin-flip processes ((o9~), >/o), > o- Rescale their interfaces 
to 

{x, y) e RE: x/e or y/e is an integer} 

Our aim is to prove statements of the following type: 
If the rescaled interfaces of the initial configurations o9~ have a simple 

structure and converge (as e ~ 0 )  to the curve {(x,~o0(x))}, then the 
rescaled interfaces of o9~/,2 converge to {x, <p(t, x))}, where cp(t, x) is the 
solution of the Cauchy problem (1.1). 

Below we are going to state Theorem 2. l for what we shall call "pinned 
stairstep configurations" and Theorem 2.2 for special configurations with 
nonmonotone  interface under a partially frozen dynamics. We also explain 
the maps to the corresponding version of the exclusion process in these 
subsections. 

2.1. Pinned Stairstep Configurations 

Call o9 ~ { -  1, + 1 } z2 a stairstep configuration if its interface is non- 
empty and the" spins right and above any lattice site with positive spin are 
also positive, i.e., for all P~,P2 E TI a n d / e  ~1 = { 1, 2,...} it holds that 

og(pl,p2+l)>~og(pl,p2) and o9(pl +l, p2)>~o9(pl,p2) 

It is easy to see that s(p, o9) ~ {0, 1, 2} for all sites p in any stairstep con- 
figuration co. Since our  conditions (2.1) on c ~ forbid flips with s = 0  or 

822/79/5-6-9 
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s = 1, the set of stairstep configurations is invariant under c~-dynamics and, 
moreover,  only events with s = 2 occur. 

Looking again at (2.1), this shows that the evolution of stairstep 
configurations is completely determined by 0c and does not depend on the 
particular choice of c'(a, s) for s = 3, 4. 

In Fig. 1 we give a typical example of a stairstep configuration. Our  
convention is that the sign in a plaquette stands for the spin at its upper 
right corner. 

The interface of a stairstep configuration is always simply connected 
and, if it is not  empty, its shape resembles an infinitely long stairstep. 

Under  c '-dynamics,  only spins at the corners of the interface can flip. 
The rate for flipping 

[+j to 

is c~( + 1, 2 ) =  r l + tanh(00]/2, for the reverse direction it is c ~ ( -  1, 2 ) =  
[ 1 - tanh(~)]/2.  

Our  theorem on the macroscopic evolution of interfaces will be for- 
mulated for initial distributions living on a subset PS of { -  1, + 1} z2 
which we shall call pinned stairstep configurations. By definition, a stairstep 
configuration is pinned iff there is an integer N such that for all p] >~ N 

oo(p~ p 2 ) = {  + ]  if p 2 > 0  
' - i f  p2~<0 

Loosely speaking, this means that its interface coincides with the x axis for 
x large enough. The advantage of pinned interfaces is that their position in 
7/2 is determined by the increments of the interface height. This will be 
important  because our mapping to the one-dimensional model below will 
be one-to-one restricted to pinned stairstep configurations. 

Our  example above is pinned if we assume that the interface height 
stays zero for x right of the area shown in the figure. 

- i  . . . . .  + i + !  ......... L . . . . . . . . .  ' . . . . . . . . . . . . . . . . . .  L 
- i  . . . .  + I + i  

i . . . . . .  

- I  . . . . .  +i ) 

- i  . . . . . .  i - i  i I 

Fig. 1. A pinned stairstep configuration. 



Interface Mot ion  in a Planar Spin-Flip Model  929 

Considering the family ((co,), 1> 0), > o of  processes as introduced above, 
it is clear that  co~ ~ PS  for all t/> 0 if cog is distributed on PS. In this case 
and for arbi t rary x e eT: and t/> 0, 

<p'(t, x) := sup{ y e r co~,/:(x/e, y/e) = - 1 } 

(with the convention sup ~ =  + ~ )  is a well-defined quanti ty from 
( -  ~ ,  + co ] describing the macroscopic  height of  the interface above the 
x-axis in the space-time rescaling under consideration. 

Since co~e PS, <p'(t, x) is nonincreasing in x. Hence any limit curve 
will be nonincreasing. Instead of (1.1) we can therefore write 

1 ( - -  . ~o,=~go.,. x 1--q~.,.) -2 y~0~(1--<px) -~, t > 0 ,  x ~  
(2.2) 

<p(t,x)~(po(X) as t ~ 0  + for all x e R  

As announced in the introduction,  we are going to formulate our result in 
a different coordinate  system. We will use the lattice length a (and time t) 
to parametr ize the interface. This is not only "more  geometric," but also 
crucial for our p roof  of  the equat ion in its simpler form in (t, a) coordinates. 

To  this end, order the lattice points on the interface of  an arbi trary 
pinned stairstep co, into a doubly infinite sequence such that  subsequent 
points are nearest neighbors on 7/2 . There is exactly one way to index this 
sequence as 

(PI( l, co), P2(/, co))l~ z 

such that it satisfies 

l=p l ( l ,  co)--p2(l, co) for all l~7/  (2.3) 

For  the process (co~),>~o we rescale its interface to (e7/) 2, i.e., we consider 
for a ~ 7/ and t >/0 the macroscopic  coordinates of  the interface 

(x=(t, a), y'(t ,  a)) :=  (~ .pl(a/e, co,~/=_,), r .p~(a/e, co,~/=_,)) 

Then we have 

a = x ~ ( t , a ) - y ~ ( t , a )  for all a ~ e Z  (2.4) 

It is obvious that  a is the lattice length parameter :  The segment of  the 
interface connecting the points indexed by a~ and a2 has length l a ~ - a 2 1  
for any a~, a 2 e e7:. 

The relation between q:(t ,  x) and this sequence is given by 

q : ( t , x ) = s u p { y = ( t , a ) : a ~ J _ , x ' ( t , a ) = x } ,  t>>,O, x~e~_ 

822/79/5-6-I0 
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In the nonorthogonal (a, y) coordinates, y"(t, a) can also be regarded as a 
rescaled height. Further on, we will work mainly with yE(t, a). The full 
point sequence can be recovered using (2.4). 

If we do the analogous thing on R 2, i.e., introduce 

a : = x - y  

and reparametrize the interface (x, ~0(t, x))x , n as 

(x(t,a),y(t,a))a~a with x(t,a)-y(t,a)=a 

for every time t >/0, then (2.2) becomes 

O Y a )  lO2y Oy (Oy )2 
~(t ,  =-~-~a,_(t,a)-7.-~a(t,a)--7-~a(t,a) t > 0 ,  a e N  (2.5a) 

y(t,a)--*yo(a) forevery  a~ l~  as t - * 0  + (2.5b) 

To obtain this, express the total differential dy=d~o in both the (t, x) and 
(t, a )coordinate  systems, check 

~xx(t,x)=(~aa(t,a))-I(l-~aa(t,a)) 

using a = x - y ,  and compute the dx part of the total differential of 
(Orp/Ox)(t, x). With the obtained relations one easily passes from (2.2) 
to (2.5). 

Note that a is not the length parameter on the interface curve at 
time t. 

Formulating our theorem in the y(t, a) picture permits a slightly more 
general formulation because q~o may have infinite valued and jumps even 
when Yo is finite-valued and continuous. See the example following the 
theorem. 

Note that Eq. (2.5) can be transformed to the heat equation: Set 

w(t,a):=exp[-27y(t,a)-Ta+TZt/2], t > 0 ,  a 6 R  
(2.6) 

wo(a) := exp[ -27yo(a )  - 7a], a ~ lI~ 

Then it becomes 

Ow 1 02w 
~7(t,a)=-~a2(t,a ), t > 0 ,  aelI~ 

w(t,a)--*Wo(a) forevery  a~lt~ as t--*0 
(2.7) 
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As a by-product we obtain existence and uniqueness of a classical solution 
to (2.5) for every continuous Yo: 0~ ~ R satisfying 

sup [yo(a)[/(1 + lal)< + oo 
a ~ R  

in the class of solutions with 

sup supy(t,a)l/(l+la[)< +or forevery T > 0  
O<~t<~ T a ~ R  

Explicitly, this solution reads 

y ( t , a ) = - 2  4 2?-- _ ~ e x p  

-27yo(Z)-TZ] dz t 

( z -  a) 2 

2t 

(2.8) 

for t > O  and a ~ R .  

T h e o r e m  2.1. Let o9[, e > O, be random initial configurations from 
PS with the property that their rescaled height y~(O, �9 ) converge vaguely in 
probability to a given piecewise differentiable function Yo: • --+ R, i.e., 

ff 
oo 

e ~ f(a)y'(O,a) P, f(a)yo(a)da for e ~ 0  + (2.9) 
aE~:Z - - o o  

for all f from the space Co of continuous functions on • with compact 
support. Additionally, we assume that for each 6 > 0 there is an e0 > 0 such 
that 

sup P(y~(O, a) > fi) ~ 0 as a --* ~ (2.10) 
~ > ~ 0  

Then ye(t, a) converges vaguely in probability to the solution y(t, a) of 
(2.5) for all t > 0  and the convergence is uniform in [0,T]  for all finite 
T >  0. For arbitrary f ~  Co, T >  0, and 6 > 0 this means 

P ( sup e ~ f(a)y~(t,a) 
X O < ~ I < ~ T  a ~ e Z  

- f(a)y(t,a)da >6 --*0 as e--*0 + (2.11) 
- - o o  
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Remarks. 1. Piecewise differentiability of Yo means that Yo is con- 
tinuous but the set of a where yo(a) is not differentiable has no (finite) 
accumulation points. 

2. Our restriction to PS-configurations implies 

y ~ ( O , a + e ) - y ~ ( O , a ) E { O , - e }  for a t e  

and 

y~(0, a) = 0 for a ~ e7/ large enough 

and 

- a  for a < 0  
yo(a) = 0 for a~>0 

Plugging this into formula (2.8) and going to the limit as t ~ ~ ,  we obtain 
in the case 7 < 0  that y(t, a) tends to 

1 
y~,(a) := -2-~.log(1 + e2~'~), a ~ R  

Thus, the asymptotic interface is given by 

{(x,y): e2~'x.-[-e2rY= 1, x >~O, y>~O} 

This result is in agreement with earlier work of Marchand and Martin, ~81 
who considered the c%process starting from o~. 

so that y~(0, a) is nonnegative and nonincreasing in a ~ eZ. For every Yo 
permitting an approximation by PS-interfaces as in (2.9) it follows that 
yo(a) is a nonnegative nonincreasing function of a ~ R satisfying 

dyo 
da (a)E [ - 1 , 0 ]  for almost all a~  R 

The "one-sided" tightness conditions (2.10) implies yo(a) ~ 0 as a ~ ~ .  

Example.  Let c3 be the configuration with positive spins at all sites 
in Z 2 with both coordinates positive, all other spins negative. Set ~o~ to o3 
deterministically. The interface of e3 is then 

{(x ,y)~  ~ 2 : ( x = 0  and y~>0) or ( y = 0  and x~>0)} 

Parametrizing it by a = x - y  gives 

y~(0, a ) = { O  a for a ~ e Z ,  a < 0  
for a ~ eE, a >~ O 
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In our notation (with ~t different from that in ref. 8) they proved for 
ct < 0 that the distribution after time t converges (for t ~ oo) to some prob- 
ability measure F" on { + 1 , -  1} z'- with IP~(PS)= 1. After rescaling the 
interface to the e-lattice (EZ)-' and letting e ~ 0 ,  Marchand and Martin 
showed that the distribution of this rescaled interface under P'I~ converges 
to the measure putting unit mass on the graph above. 

Their proof uses a mapping to the one-dimensional exclusion process, 
knowledge about the stationary measures of the latter, and combinatorics. 
It inspired us to extend the same method to pinned stairstep configurations 
and their time evolution. 

Next we introduce the main tool for the proof of this theorem, 
the mapping to the one-dimensional exclusion process on 7/ with 
state space {0, 1 } z. Take any 09 ~ PS and construct its point sequence 
( P 1 (/, co), P 2(/, 09 )) I ~ z as before. We define the image ( = (((l) )t ~ z of 09 by 

((l) : = p ~ ( l -  1, co) -p2(l, co), I t  7/ 

The properties of a pinned stairstep imply that ( belongs to the set 

FR:={(=(((I)t~z~{O, 1} Z: ~ ( ( l ) <  + ~ }  
I = 1  

Interpreting (~{0 ,  1} z as a particle configuration [ ( ( l ) = 1  if leT~ is 
occupied, ( ( l ) =  0 if empty],  we have that FR is the set of configurations 
with only finitely many particles on the right. 

This map is a bijection between PS and FR: The only co ~ PS being 
mapped to some ff ~ FR is the configuration having the interface obtained 
by connecting the neighboring points in the sequence 

(1+  ~. ((k), ~. ( (k ) ) ,  I~Z  (2.12) 
k = l + l  k = l + l  

by line segments. The sums are finite due to (eFR. Note the analogy 
to (2.3). 

Now apply this bijection to map the paths of the spin-flip process 
(co,),~o, started almost surely in PS, to a process ((,),/>0 living on the sub- 
set FR of { 0, 13 z. A flip of the type 

i -1  to 
is mapped to an exchange 

...10... to ...01... 
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in ~ written as a doubly infinite 0-1 sequence. Analogously,  flips in the 
reverse direction are seen in the F R  picture as transitions 

...01... to ...10... 

Thus we obtain a process (( , ) ,~o whose generator,  applied to a cylinder 
function f on { O, l } z, has the value 

{ c ' ( + l , 2 ) . ~ ( k ) [ 1 - ~ ( k +  1)] 
k ~ Z  

+ c~( - 1, 2)-  ( (k  + 1 )[ 1 - U k ) ]  } [ f ( ( k .  k + ,) _ f ( ( ) ]  

at ~ e F R  _ { 0, 1 } z, where (k. k + 1 is the element of  F R  obtained from ( by 
exchanging ~(k) and ( ( k +  1). This means that  ((t),~>o is an asymmet r i c  
exclusion process  on 7/l iving on the subset FR,  which is invariant for the 
dynamics described here. 

Schematically, the transition rates for the "particles" (the ones) can be 
depicted as 

M M M M M M 

. . .  �9 �9 �9 �9 �9 . . .  

( m < m ( m ( m ( m ( m 

. . . .  2 - I  0 1 2 .-- 

where m = [ 1-tanh(oO/2, M = [ 1 + tanh(oO]/2. 

2.2. Partly Frozen Dynamics and Nonmonotone  Interfaces 

Thinking about  an extension of the mapping  to one-dimensional  pro-  
cesses to configurations with nonmono tone  interface heights, one is forced 
to deal with interfaces containing a segment like 

+ 

I + 1  - 

so that flips with s = 3 must  be allowed which locally cut down the inter- 
face length by two units. This makes  it difficult to map  to one-dimensional  
model with local interaction. Another  open question is the dependence of 
the resulting equation on c~(., s) for s/> 3. 

If  one agrees to modify the dynamics,  it is nevertheless possible to 
study the mot ion of interfaces composed of a "zigzag stairstep" and another  
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I + I + 1  § 

j + i + l  § 

_-EV 

+ + i + -;-j § 2 4 7  
- i - i  

I i 

- .-_L_-_J-J 
2,_L-_ L-_J 

~ - ! - ~  . . . .  i - i - i  

J - i - i -  - - ~  i ] 
-2 0 

Fig. 2. A V-stairstep. 

increasing stairstep like the one in Fig. 2. Here the site at which both parts 
meet is market by a dot. This configuration satisfies the following definition 
with N(og) = 2. 

We call co e { -  I, +1} z2 a V-stairstep if there is an integer N(og)>/0 
such that the interface contains the edges 

( ( - k - l , k ) , ( - k , k ) )  and ( ( - k - l , k + l ) , ( - k - l , k ) )  

for all k~<-N(og)  and runs in the half-plane [ - - N ( o g ) , ~ ) x R  only 
rightward or upward (i.e., it forms an increasing stairstep). 

Obviously a V-stairstep determined by N(og) and the shape of its 
increasing stairstep. There is a one-to-one correspondence between the set 
VS of all V-stairsteps and the set I~l~215 1} ~§ namely OgEVS 
corresponds to ( from I~/~ x {0, I} z+ if and only if the lattices sites on the 
increasing stairstep of o9 are given by 

k 

The example in Fig. 2 corresponds to 

(=(2,1,0,1,0,0,1,0,0,...) 
0 . 1 . 2 . 3  . . . .  

Generally we have N(o9)= ((0). Horizontal pieces of the interface are again 
mapped to zeros, vertical ones to ones. 

Next we introduce the modified dynamics. On the increasing stairstep 
part of the interface of o9 r VS we keep the rates as before, i.e., there are 
only (s = 2)-events with transition rates 
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c ~ ( - 1 , 2 )  from [_:~ to !-+-I 

c~(+ 1,2) from !-+--[ to [._~_ 

We do not permit any spin-flip on the decreasing zigzag part  of  the inter- 
face except if there is exactly one positive spin with the lowest height. At 
such a site we have s = 3 and we allow the transition 

" 

to i - i with rate c a ( + l , 3 )  

Every flip of this type lets N(o)) grow by one unit; all other flips do not 
affect this number. 

One may regard the zigzag part  as frozen for the dynamics and the 
events with s = 3 as unfreezing at the point where both parts meet. 

Since VS is invariant under these dynamics, we can map the spin-flip 
process (o9,),/_. o to its image ((,) ,  ~ o with state space N { o l x { 0, 1 } z § Look  
at its possible transitions. Particles at site zero can no longer leave [since 
N(co,) is nondecreasing in time]. A particle at site one may jump to zero 
leaving a hole behind, increasing ((0)  by one unit. Note  that this takes 
place independent of the number  of particles at zero, so there is no exclu- 
sion restriction. All otherjumps of particles are as in the exclusion process. 
The mnemonic for the rates reads 

,"tl ) m ) m ) 

�9 �9 �9 �9 . . .  

( M  ~ M  r  ( M  

0 1 2 3 ... 

with again m = [1 - t a n h ( ~ ) ] / 2 ,  M =  [1 + tanh(~) ] /2 .  We shall refer to 
(~,),~o as the exchtsion process with trap at zero. 

Again, we make a dependent on e by setting ~ = ~,e for some y :/: 0. Let 
(o9~),~> 0 and ((~),~>o denote the corresponding families of processes with 
state spaces VS and N Iol x {0, 1 } z§ respectively. The rescaled heights are 
defined as 

ale 

y ' ( t ,a ) :=e  ~ ff,~/~(k), a~e~d, t~O 
k = 0  

The lattice points on the increasing part  of the rescaled interface are then 
given by (x~(t, a), y~(t, a)) ,~,~,  where 

a/~ 

x ' ( t , a ) : = a - - y ' ( t , a ) = a - - e  ~, (~/~2(k), a~e~ ,  t>~O 
k = O  
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In the (t, x) coordinates, we expect that the interface height cp(t, x) equals 
- x  for x less than some threshold moving left with time due to unfreezing, 
and that it will be nondecreasing to the right of this threshold. 

On that nondecreasing branch, (1.1) simplifies to 

r = �89 + ~px)-2 + 7q~(1 +~0x) - t  

In a fashion similar to that preceding Theorem 2.1, one can check that this 
is the equation following from 

102y OY ( t , a ) - 7  0Y (t,a) , t > 0 ,  a > 0  (2.14) ( t' a ) = -2 ~a2 ( t' a ) + 7 " -~a ~a 

after substituting 

q~(t, x )=  y(t, a) for the x with x = a -  y(t, a) 

and eliminating a subsequently. 
In analogy to y~(t, a ) = e . ~ / d ( 0 ) ,  the boundary condition at a = 0  

should have the form 

y(t,O)=q(t), t > 0  

where q(t) is an asymptotic expression for the height of the bottom of the 
V-stairstep at macroscopic time t. 

W e  will show that this is true with qo := yo(0) and 

1;i02Y (s,O) ds, t>O q(t) : = q o + }  ~ a  2 

i.e., the boundary condition will be 

lf~O2y(s,O)ds, t > 0  (2.15) y(t, 0) = yo(0) + ~  

Here is the analog of Theorem 2.1 for the process with modified dynamics: 

T h e o r e m  2 .2 .  Let e)~, e >  O, be random initial configurations 
from VS with the property that their rescaled heights y'(O,.) converge 
vaguely in probability to a given piecewise differentiable function 
Yo: [ O, oo) --+ I~ in the sense that 

f: e ~ f(a)y~(O,a) P, f (a)yo(a)da for e ~ O  + (2.16) 
a ~ N  

for all f in the space Co[0, oo) of continuous functions on [0, ~ )  with 
compact support. 
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Then y'(t, a) converges vaguely in probability to a solution y(t, a) of 
the boundary value problem (2.14), (2.15). The convergence is uniform in 
[0,T] for all finite T >  0. These statements mean that we have for every 

f ~  Col0, o~) and for arbitrary T > 0  and 6 > 0  

P (  sup e ~ f ( a ) y = ( t , a ) - f  ~ f (a )y ( t ,a )da  > ~ )  

--*0 as e ~ 0  + (2.17) 

Furthermore, the initial condition 

y ( t ,a )~yo(a )  forevery a~>0 as t ~ 0  + (2.18) 

is satisfied if the derivative of Y0 is H61der continuous in a neighborhood 
of a = 0 .  

A transformation similar to (2.6) maps the problem (2.14), (2.15), 
(2.18) to an initial value problem for the heat equation with a mixed 
boundary condition. This yields an explicit solution y(t,a). We are not 
going to discuss its uniqueness here. 

3. RESULTS ON THE H Y D R O D Y N A M I C S  OF WEAKLY 
A S Y M M E T R I C  EXCLUSION PROCESSES 

In this short section we collect the result on the hydrodynamics of the 
one-dimensional exclusion process on 7/ and for its version on the non- 
negative integers with trap at zero. 

3.1. Exclusion on the Integers 

For any fixed 7:/:0, denote by ((~),~>o the weakly asymmetric exclu- 
sion process on 7/(defined for general ~ in the last section) with ct = ye and 
define measures X~, t >t 0, e > 0, on the real axis by 

X~:= ~ e.C,/~2(k).c~k (3.1) 

Here gx denotes the Dirac measure concentrated in x. Let Uo be a piecewise 
continuous function on 7/with values in [0,1 ] and denote by u(t, a), t > O, 
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a ~ I~, the unique bounded solution of Burgers' equation with viscosity and 
initial data  u 0 

Ou 1 02u 
~ ( t , a ) =  ~ a 2  (t, a)-- 

u(t, a) --* uo(a ) for 

7.0---(u(t,a)[1--u(t,a)]), t > O ,  a ~ R  
Oa 

t---, 0 § at all continuity points a of  Uo 

(3.2) 

The measures X~ and u(t, a)da both  belong to the space .//[+ of locally 
finite measures on R. We equip it with the vague topology,  i.e., a sequence 
of measures (p,,),,~ ~ from ~ ' +  converges to p e Jr if and only if 

f n f  dp,,--* I R f  dp for all f eCo 

Then J / +  is Polish. For  details see Kallenberg, 151 Chapter  15, or Bauer, (~ 
Theorem 31.5. 

The following theorem was proved by G/irtnerl41: 

Theorem 3.1. Suppose that the distributions of  ((~) satisfy 

e P X o , uo(a) da vaguely in J/+ as e ---, 0 

Then the convergence 

P X", , u(t, a) da vaguely in J l +  as e ~ 0 

holds for every t > 0 and uniformly in each time interval [0 ,T]  in the sense 
that  we have 

P(,~to.SUPrl f ~k dX~ - f ~ ( y ) u( t, y ) dt > 6 ) ~ 0 as e ---, 0 + 

for every ~k ~ Co. 

Remark. Only the case ), = - 1  is actually treated in ref. 4, but the 
proof  easily carries over to general 7 # 0. It  involves linearizing Burgers'  
equation by the C o l e - H o p f  t ransformation and a stochastic version of 
this to treat the exclusion process. Other  methods  for proving convergence 
of the particle densities to the solution of Burgers '  equation are quite 
different. (2' 6) 

822/79/5-6-11 
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3.2. Exclusion on the Nonnegative Integers with Trap at Zero 

Denote  by ((~),.>o the exclusion process with t rap at zero as described 
in Section 2.2, where again ct = ye for some y 4= 0. Define r andom measures 
in Jg+ by 

X ~ : =  ~ e.(*u~2(k).6a, for t>~O, e > O  
k = O  

and let uo: (0, ~ ) - - *  [0, 1] be a piecewice cont inuous function. Consider  
the unique bounded (classical) solution u(t, a) of  the initial boundary-value  
problem 

Ou 1 02u 
-~(t, a)= ~ (t, a) +?.~a(U(t ,a)[1-u(t ,a)]) ,  a > 0 ,  t > 0  

u(t, 0 ) = 0 ,  t > 0  (3.3) 

lim u(t, a) = uo(a) at all continuity points a of  u o 
t ~ 0  

Depending on u and some number  0o >~ 0, define the function 

1 t" Ou 
O(t):=Oo+~Jo~a(S,O)ds, t>~O (3.4) 

Applying basically the same methods as G~irtner t4~ to a stochastic 
Hopf -Cole  t ransformation adapted to the t rap case, the following analog 
to Theorem 3.1 was proved by the author.  ~2) Actually, our  interest in the 
exclusion process with t rap arose originally from the observat ion that  one 
can m a p  it to a spin-flip process on V-stairsteps. 

Theorem 3.2. I f  

e P X o , dlo6o+Uo(a) da as e ~ O  + in ~t/+ 

then 

X~ ~', O(t) 6o+U(t,a)da as e---,0 + in Jr 

holds for all t >/0, uniformly in [0, T]  for every T >  0. 

Remarks. 1. In the definition of ((~),~>o we did not specify the rate 
c~(')( + 1, 3) for jumps  into the trap. A coupling argument  shows that  all 
values greater than or equal to c~t')( + 1, 2) lead to the same limit. Here we 
also allow infinity as a value, which means that  flips with s = 3 occur 
instantaneously. In ref. 12 we treated the case c~t')( + 1, 3) = c~t')( + 1, 2). 
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2. An approximation of the indicator function of {0} yields 

, O(t)  as e ~ O  + e. (,/e2(0) P 

for t~>0, so O(t) is the asymptotic mass of particles in the trap at macro- 
scopic time t if it was initially 0o. 

4. DERIVATION OF THE EQUATIONS FOR 
INTERFACE MOTION 

In this section we prove Theorems 2.1 and 2.2. We first explain the 
idea. 

Looking at (2.12) in our scaling of the interface, note that in the case 
of Theorem 2. I we have 

yE(t,a)=X~,(a, c ~ ) = e  ~ (~le2(k) (4.1) 
k = [a /e]  + 1 

for t >/0 and a E eT/. If the vague convergence of Theorem 3.1 would imply 

f; X~(a, oo) ~', u(t,z) dz as e ~ O  + (4.2) 

we would get convergence of the rescaled heights yE(t, a) to 

f: p(t, a) := u(t, z) dz 

and Burgers' equation (3.2) would give Eq. (2.5b) for 9. Similar considera- 
tions are possible for the trap case. 

The tightness condition (2.10) of Theorem 2.1 will allow us to check 
the assumption of the following lemma, which ensures (4.2) and allows us 
to carry out the above program. A sketch of proof will be given before we 
proceed. 

L e m m a  4.1. In the situation of Theorem 3.1, assume that for some 
eo > 0 and all ~ > 0 we have additionally (~ E FR almost surely and 

lim sup P(X~(L, oo) > ~ ) = 0  (4.3) 
L ~  oo e ~ < e 0  

Then the following statements are true: 

(i) We have 

lim sup P( sup X~(L, o o ) > ~ ) = 0  for every T > 0  and ~ > 0  (4.4) 
L ~ o o e < ~ e o  t ~ [ O , T ]  
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(ii) For every a e R and 6 > O, 

lim lim P(IX,(a,  oo)-X~o(a, oo)1 > 6 ) = 0  
t ~ 0  + ~ 0  + 

(iii) u(t, .) is integrable on [0, oo) and we have 

f? X",(a, oo) P, u(t,z) de as e-- ,0  foral l  a e R  

both uniformly in [0, T] for arbitrary T >  0. 

Sketch of tho Proof of Lomma 4.1. That (4.3) implies (i) and (ii) 
reflects the fact that we are working on a space-time scale on which macro- 
scopic masses move at a finite speed. So it is perhaps not surprising that 
a proof requires the same tools as the law of large number (Theorem 2.1), 
namely the nonlinear transformation of the process and the estimation 
methods of ref. 4. We omit the details. 

If  u(t, .) were not integrable as stated in (iii), there would be 5 > 0  
such that for every L > 0 there is t e [ 0, T] and M > L with 

M 

f~ u(t,z) dz>25 

Using Theorem 3.1, we obtain 

P(X~,(L,M)>fi)~I  for e ~ 0  + 

after approximating the indicator function I(LM)(- ) by C0(R)-functions. 
The approximation procedure works because 

X~,[L,L+h]<~e([h/e]+l) foral l  t~>0, h~>0, and e > 0  

holds almost surely and u is uniformly bounded in [0, T] x R. This implies 
for 5 chosen as above and arbitrary L > 0 and eo > 0 

sup P( sup X~,(L, oo) > 5) >1 1/2 
~ e  0 t e [ 0 ,  T ]  

which contradicts (i). 
For the remaining P-convergence, fix q > 0, 5 > 0, and a e R. By (4.4) 

and the uniform integrability of u there is an L > 0 such that 

P( sup X~,(L, o o ) > 6 ) > q  for all e~<eo 
t e [0 ,  T]  
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and 

sup u( t, z ) dz > 6 
te[0, T] 

Now approximate the indicator lt,, L)(') by compactly supported functions 
and apply Theorem 3.1. This procedure shows that there is an e~ > 0 such 
that 

for all e ~< e 

For e ~<min(eo, e,) we obtain 

c I f: ) ~<P sup XT(a,L)--  u(t ,z) dz >~6 
\ r e [ 0 ,  T] 

C ;2 ) + P (  sup X,(L, oo)>~6)+P sup u(t, ) 6  
t~ [0, T] k.t~ [0, T] 

which is less than or equal to 2q, since the third summand is zero. 
To complete the proof of (iii), send q and 6 to zero. I 

Proof of  Theorem 2.1. Fix Yo and (o9~),> o according to the assump- 
tions of the theorem and set 

0 
u~ := aa yo(a) 

This is defined for almost all a ~ l~ and Uo is piecewise continuous. Remark 
2 to Theorem 2.1 shows that its values are in [0, 1 ]. 

Recall that image ((~),~o of the spin-flip process (o97),~ o under the 
bijection from" PS to FR described in Section 2 is just the exclusion process 
started in the image (~ of co o. Let (X,),~>o be the measure on R defined in 
(3.1) and y" the rescaled height process of the interface of (o9~),~>0. Then we 
have 

(~o(a/e)=[y'(O,a-e)--  y'(O,a)]/e, a~eZ 
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Our first aim is to show the assumption of Theorem 3.1, i.e., 

~ g(ek)~o(k) P f~  , g(a) uo(a)da as e ~ 0  for every g~Co (4.5) 
k ~ Z  - - ~  

To this end, approximate the Dirac distribution concentrated at a s N by 
functions f eCo  and use (2.9) and the properties of y" mentioned in 
Remark 2 to Theorem 2.1. This results in 

y'(O,e[a/e]) P,yo(a) as e ~ 0  + fora l l  a s R  

which can be rewritten as 

XgEa, ~ )  ~ I ~ , Uo(Z) dz as ~ 0  + foral l  a ~ R  aa 

Next fix arbitrary g e Co and h > 0 and define 

gh(a) :=g(h[a/h])= ~ [g(hk)-g(h(k + 1))]. le,,k ' ~}(a), 
k e Z  

Clearly it follows that 

a ~  

fgl,(a) X~(da) P, fgh(a) uo(a)da, e--*O + 

Sending h ~ 0 +, this generalizes to (4.5) by standard arguments involving 
the estimates 

0 ~<X~[a, b)<~b-a+E 
b 

and O<~;s Uo(Z) dz<~b-a for a<b 

This shows that we are in the situation of Theorem 3.1. Furthermore, 
we can apply Lemma 4.1 because (4.3) is just a combination of (2.10) 
and (4.1 ). 

The interface on the lattice (eT/) 2 at macroscopic time t~> 0 connects 
the points of the doubly infinite sequence indexed by a e e2v with members 

(x'(t,a),y~(t,a))=(a+e ~ (~/p.(k), e ~. ff~/~2(k)) 
k = a / e  + 1 k = a / e  + 1 

=(a+ X~(a, co), X~(a, ~)) 
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As e ~ 0 +, part  (iii) of Lemma 4.1 implies 

sup y" t ,e u(t, ~" - , 0 ( 4 . 6 )  
te  [0, T] 

for all fixed T >  0 and a e R, where u is the solution to Burgers' equation 
(3.2). Next we prove that 

p ( t , a ) : =  u(t ,z)  for t > 0 ,  a e R  (4.7) 

solves the Cauchy problem (2.5). 
By construction and Remark 2 to Theorem 2.1 we have 

and 

yo(a) = Uo(Z) dz --* 0 as a ---, 

0 <~ uo(a) <~ 1 

These relations imply for every T >  0 

sup u( t, a ) ~ O 
O<~t<~ T 

and 

almost everywhere on R 

for a ~ ov (4.8) 

~U 
s u p r - ~ a ( t , a ) ~ O  as a ~ o o  forevery  toe(0,  T] (4.9) 

to<~t ~ 

Remember that the Cole-Hopf  transformation (~3~ maps Burgers' equation 
to the heat equation. This provides an explicit solution of (3.2), from 
which these properties can be extracted. As a side remark, observe that the 
Cole-Hopf  transformation appears implicitly in (2.6): Just replace y(t, a) 
by (4.7). 

Hence the integrals 

~ ( t , z )  az 
;a ~176 02U 

(t, z) d: and 

converge uniformly in [ to, T]. By Burgers' equation, the same is true for 

~ Ou 
~ ( t , z ) d z  
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This ensures 

Off a) f ?  OU -~( t ,  = N ( t , z )  dz 

for all a e R  and t > 0  (choose to and T appropriately). Exploiting the 
definition of P, Burgers' equation, (4.8), and (4.9) once more, we arrive at 

~-~-~t(t,a)=fa [20a2(t,z)--y.~a(U(t,z)[l--u(t,z)]) dz 

I Ou 
- 2 0 a ( t , a ) + y . u ( t , a ) [ 1 - u ( t , a ) ]  

102^ Ofi ( t ,a )_y(c3  p )2 
- 2 ~ ( t , a ) - - Y ' ~ a a  -~a (t, a) 

for arbitrary t > 0 and a e R, i.e., )3 satisfies Eq. (2.5a). The initial condition 
(2.5b) follows from the triangle inequality 

( s ; )  1 [u(t, z)--Uo(Z)[ d z > 3 6  

~<lim P X~,( a, ~ ) - u( t, > 6  
e ~ O  

+ l i m p  X ~ ( a , ~ ) -  Uo(Z) >6  

+l im P(lX~(a, c~)-X~o(a, c~)[ >6) ,  6 > 0  
e ~ O  

together with the observation that the first two terms on the right vanish 
by part (iii) of Lemma 4.1, while the third tends to zero as t ~ 0 + by part 
(ii). Sending first t and then 6 to zero, we get (2.5b): 

fi(t, a) = u(t, z) dz ~ yo(a) = Uo(Z) dz as t ~ O  + for all a e R  

So P is indeed a solution of problem (2.5). 
In order to show that )) coincides with the function y defined in (2.8), 

we need to establish 

sup lyo(a)l/(1 + Jal)> + oo 
a ~ R  
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and 

sup sup lP( t , a ) l / ( l+ la l )<  +o~ forevery 
O<~t<~T a ~  

T > 0  

in view of the uniqueness result preceding Theorem 2.1. 
By construction we have 

lye(t, a,) - y"( t, az)l 

<~[al-az] fo rany  a l ,a2~eZ  , t>~O, 

and hence for all a~, az ~ 

lYo(al) - yo(a2)l ~< lal -- a2l 

and 

[.9(t, a,)  - )3(t, az)l ~< [al - a2 l, 

Therefore it suffices to show 

and e>O 

t~>0 (4.10) 

sup [p(t, 0 ) l < + ~  fo rany  T > 0  
O<~t <~ T 

This can be obtained using, for example, the transformation (2.6) onto the 
heat equation. 

So we established y = 9. Equations (4.6) and (4.7) now yield 

sup y'(t,e[a])--y(t,a) P , 0  forevery  a 6 .  and T > 0  
t~[O, T] 

Applying (4.10) again, we obtain 

e f'~" da sup ~ f(a)y~'(t,a) - f ( a ) y ( t , a )  
O<~t<~ T a ~ Z  --oc, 

~', 0 as e - o O  + 

for all T >  0 and every compactly supported continuous f Thus, we have 
shown the assertion (2.11) of Theorem 2.1. ] 

Theorem 2.2 can be proved in a similar way exploiting the law of large 
numbers for the exclusion process with trap given above as Theorem 3.2. 

Proof of  Theorem 2.2. Recall that (co~),~ o now denotes the spin-flip 
process with state space VS and partly frozen dynamics and (~),>~o the 
corresponding exclusion process with trap on N I~ x {0, 1 } z+ 
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As is seen from (2.13), the (eZ) 2 lattice points on the increasing part 
of the interface of o~7 are given by the sequence 

(x'(t, a), y'(t, a)) = (a - XT[0, a] ,  XT[0, a] ) 

/ 6/, o/, ~ k E r Z ) 
/ 

" ,  k = 0  k = O  

indexed by a ~ el~. 
Approximate the indicator function 1 I,,I by a sequence from Co[0, ~ )  

to obtain from (2.16) 

y~(O,e[a/t]) P,yo(a)  as e ~ 0  + foral l  a~>0 

Setting 

d 
uo(a) :=daa yo(a) and qo := yo(0) 

(the first is defined for almost all a e [0, oo)), we find that this goes over 
to 

X'o[0, a] " f~' ' qo+  Uo(z)dz as e ~ 0  + 

for every a ~> 0. This extends easily to the vague convergence assumed in 
Theorem 3.2 (with 0 := qo). Applying this theorem and another approxima- 
tion, we deduce 

sup X,[0, a]  - 0 ( t )  u(t, z) dz P - , 0 a s  e - - , O  + 

O<~t<~ T 

for every a~>0 and T > 0 ,  where u solves (3.3) and 0(t) is defined by (3.4). 
Rewrite this as 

sup [y ' ( t , e [a /e] ) -y ( t ,a ) l  P,O as e--*0 + (4.11) 
O < ~ t ~ T  

with 

y( t ,a) :=O(t )+ u(t ,z)dz,  t > 0 ,  a~>0 (4.12) 



Interface Mot ion  in a Planar Spin-Flip Model  949 

We are now going to show that y satisfies Eq. (2.14), (2.15), and (2.17) if 
Y0 is defined by 

f2 yo(a) := qo + Uo(Z ) c&, a >10 

The boundedness and piecewise continuity of u0 imply that Ou/Ot is 
uniformly bounded in all regions of the form [t  o, T] • [0, A], 0 < to< T, 
A >/0, so that we can differentiate (4.12): 

Oy (t,a) d fo'Ou 0-t- = ~  ~(t) + -~(t,z) dz, a>~O, t > 0  

Replace the time derivatives on the right-hand side using (3.4) and Burgers' 
equation (3.3) with its boundary condition. Values at (t, 0) drop out and 
we get 

Oy ( t, 10u a)=~a( t ,a )+?.u( t ,a ) [1-u( t ,a )  ], t > 0 ,  a~>0 

In view of (4.12), this coincides with Eq. (2.14). 
From (4.11) one can pass to the vague convergence (2.17) as in the 

proof of Theorem 2.1. 
On the other hand , qo=0o,  (3.4), and (4.11) imply 

1 1 rtO2y 
O(t)=glo+ } -~a(S,O) ds=qo+~JoOaz(S,O)ds=q(t), t>~O 

This proves that the boundary condition (2.15) holds. 
The initial condition (2.18) follows directly from 

u(t,z) dz-* Uo(z) dz as t - * 0  + for every a~>0 

(this is just bounded convergence) and 

f~ Ou ~a(S,O) ds-*O as t - * 0  + (4.13) 

Because we do allow noncompatible initial and boundary conditions [Uo(0) 
must not be zero], we have to refer again to the explicit solution. It can 
be seen that (4.13) holds at least if u o is piecewise continuous on [0, oe) 
and H61der continuous in a neighborhood of zero (with some exponent). 

This concludes the proof of Theorem 2.2. II 
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